Step of Proof: decidable__quotient_equal
12,41
postcript
pdf
Inference at
*
1
1
1
2
1
I
of proof for Lemma
decidable
quotient
equal
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
4.
f
:
T
T
5.
x
,
y
:
T
. (
(
x
f
y
))
E
(
x
,
y
)
6.
f
(
x
,
y
:
T
//
E
(
x
,
y
))
(
x
,
y
:
T
//
E
(
x
,
y
))
u
,
v
:(
x
,
y
:
T
//
E
(
x
,
y
)). (
(
u
f
v
))
(
u
=
v
)
latex
by ((((RepD)
CollapseTHENM (CSquash))
)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat
C
1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
7.
u
:
x
,
y
:
T
//
E
(
x
,
y
)
C1:
8.
v
:
x
,
y
:
T
//
E
(
x
,
y
)
C1:
((
(
u
f
v
))
(
u
=
v
))
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
x
f
y
,
x
:
A
.
B
(
x
)
,
x
(
s1
,
s2
)
,
,
P
Q
,
SqStable(
P
)
Lemmas
sq
stable
equal
,
decidable
assert
,
sq
stable
from
decidable
,
quotient
wf
,
assert
wf
,
sq
stable
iff
origin